module Int64: sig .. end
64-bit integers.
This module provides operations on the type int64
of
signed 64-bit integers. Unlike the built-in int
type,
the type int64
is guaranteed to be exactly 64-bit wide on all
platforms. All arithmetic operations over int64
are taken
modulo 264
Performance notice: values of type int64
occupy more memory
space than values of type int
, and arithmetic operations on
int64
are generally slower than those on int
. Use int64
only when the application requires exact 64-bit arithmetic.
Literals for 64-bit integers are suffixed by L:
let zero: int64 = 0L let one: int64 = 1L let m_one: int64 = -1L
val zero : int64
The 64-bit integer 0.
val one : int64
The 64-bit integer 1.
val minus_one : int64
The 64-bit integer -1.
val neg : int64 -> int64
Unary negation.
val add : int64 -> int64 -> int64
Addition.
val sub : int64 -> int64 -> int64
Subtraction.
val mul : int64 -> int64 -> int64
Multiplication.
val div : int64 -> int64 -> int64
Integer division.
Division_by_zero
if the second
argument is zero. This division rounds the real quotient of
its arguments towards zero, as specified for (/)
.val unsigned_div : int64 -> int64 -> int64
Same as Int64.div
, except that arguments and result are interpreted as unsigned 64-bit integers.
val rem : int64 -> int64 -> int64
Integer remainder. If y
is not zero, the result
of Int64.rem x y
satisfies the following property:
x = Int64.add (Int64.mul (Int64.div x y) y) (Int64.rem x y)
.
If y = 0
, Int64.rem x y
raises Division_by_zero
.
val unsigned_rem : int64 -> int64 -> int64
Same as Int64.rem
, except that arguments and result are interpreted as unsigned 64-bit integers.
val succ : int64 -> int64
Successor. Int64.succ x
is Int64.add x Int64.one
.
val pred : int64 -> int64
Predecessor. Int64.pred x
is Int64.sub x Int64.one
.
val abs : int64 -> int64
abs x
is the absolute value of x
. On min_int
this
is min_int
itself and thus remains negative.
val max_int : int64
The greatest representable 64-bit integer, 263 - 1.
val min_int : int64
The smallest representable 64-bit integer, -263.
val logand : int64 -> int64 -> int64
Bitwise logical and.
val logor : int64 -> int64 -> int64
Bitwise logical or.
val logxor : int64 -> int64 -> int64
Bitwise logical exclusive or.
val lognot : int64 -> int64
Bitwise logical negation.
val shift_left : int64 -> int -> int64
Int64.shift_left x y
shifts x
to the left by y
bits.
The result is unspecified if y < 0
or y >= 64
.
val shift_right : int64 -> int -> int64
Int64.shift_right x y
shifts x
to the right by y
bits.
This is an arithmetic shift: the sign bit of x
is replicated
and inserted in the vacated bits.
The result is unspecified if y < 0
or y >= 64
.
val shift_right_logical : int64 -> int -> int64
Int64.shift_right_logical x y
shifts x
to the right by y
bits.
This is a logical shift: zeroes are inserted in the vacated bits
regardless of the sign of x
.
The result is unspecified if y < 0
or y >= 64
.
val of_int : int -> int64
Convert the given integer (type int
) to a 64-bit integer
(type int64
).
val to_int : int64 -> int
Convert the given 64-bit integer (type int64
) to an
integer (type int
). On 64-bit platforms, the 64-bit integer
is taken modulo 263, i.e. the high-order bit is lost
during the conversion. On 32-bit platforms, the 64-bit integer
is taken modulo 231, i.e. the top 33 bits are lost
during the conversion.
val unsigned_to_int : int64 -> int option
Same as Int64.to_int
, but interprets the argument as an unsigned integer.
Returns None
if the unsigned value of the argument cannot fit into an
int
.
val of_float : float -> int64
Convert the given floating-point number to a 64-bit integer,
discarding the fractional part (truncate towards 0).
If the truncated floating-point number is outside the range
[Int64.min_int
, Int64.max_int
], no exception is raised, and
an unspecified, platform-dependent integer is returned.
val to_float : int64 -> float
Convert the given 64-bit integer to a floating-point number.
val of_int32 : int32 -> int64
Convert the given 32-bit integer (type int32
)
to a 64-bit integer (type int64
).
val to_int32 : int64 -> int32
Convert the given 64-bit integer (type int64
) to a
32-bit integer (type int32
). The 64-bit integer
is taken modulo 232, i.e. the top 32 bits are lost
during the conversion.
val of_nativeint : nativeint -> int64
Convert the given native integer (type nativeint
)
to a 64-bit integer (type int64
).
val to_nativeint : int64 -> nativeint
Convert the given 64-bit integer (type int64
) to a
native integer. On 32-bit platforms, the 64-bit integer
is taken modulo 232. On 64-bit platforms,
the conversion is exact.
val of_string : string -> int64
Convert the given string to a 64-bit integer.
The string is read in decimal (by default, or if the string
begins with 0u
) or in hexadecimal, octal or binary if the
string begins with 0x
, 0o
or 0b
respectively.
The 0u
prefix reads the input as an unsigned integer in the range
[0, 2*Int64.max_int+1]
. If the input exceeds Int64.max_int
it is converted to the signed integer
Int64.min_int + input - Int64.max_int - 1
.
The _
(underscore) character can appear anywhere in the string
and is ignored.
Failure
if the given string is not
a valid representation of an integer, or if the integer represented
exceeds the range of integers representable in type int64
.val of_string_opt : string -> int64 option
Same as of_string
, but return None
instead of raising.
val to_string : int64 -> string
Return the string representation of its argument, in decimal.
val bits_of_float : float -> int64
Return the internal representation of the given float according to the IEEE 754 floating-point 'double format' bit layout. Bit 63 of the result represents the sign of the float; bits 62 to 52 represent the (biased) exponent; bits 51 to 0 represent the mantissa.
val float_of_bits : int64 -> float
Return the floating-point number whose internal representation,
according to the IEEE 754 floating-point 'double format' bit layout,
is the given int64
.
type t = int64
An alias for the type of 64-bit integers.
val compare : t -> t -> int
val unsigned_compare : t -> t -> int
Same as Int64.compare
, except that arguments are interpreted as unsigned
64-bit integers.
val equal : t -> t -> bool
The equal function for int64s.
val min : t -> t -> t
Return the smaller of the two arguments.
val max : t -> t -> t
Return the greater of the two arguments.