module Int32: sig .. end32-bit integers.
This module provides operations on the type int32
   of signed 32-bit integers.  Unlike the built-in int type,
   the type int32 is guaranteed to be exactly 32-bit wide on all
   platforms.  All arithmetic operations over int32 are taken
   modulo 232.
Performance notice: values of type int32 occupy more memory
   space than values of type int, and arithmetic operations on
   int32 are generally slower than those on int.  Use int32
   only when the application requires exact 32-bit arithmetic.
Literals for 32-bit integers are suffixed by l:
      let zero: int32 = 0l
      let one: int32 = 1l
      let m_one: int32 = -1l
    val zero : int32
The 32-bit integer 0.
val one : int32
The 32-bit integer 1.
val minus_one : int32
The 32-bit integer -1.
val neg : int32 -> int32
Unary negation.
val add : int32 -> int32 -> int32
Addition.
val sub : int32 -> int32 -> int32
Subtraction.
val mul : int32 -> int32 -> int32
Multiplication.
val div : int32 -> int32 -> int32
Integer division. This division rounds the real quotient of
   its arguments towards zero, as specified for (/).
Division_by_zero if the second
   argument is zero.val unsigned_div : int32 -> int32 -> int32
Same as Int32.div, except that arguments and result are interpreted as     unsigned 32-bit integers.
val rem : int32 -> int32 -> int32
Integer remainder.  If y is not zero, the result
   of Int32.rem x y satisfies the following property:
   x = Int32.add (Int32.mul (Int32.div x y) y) (Int32.rem x y).
   If y = 0, Int32.rem x y raises Division_by_zero.
val unsigned_rem : int32 -> int32 -> int32
Same as Int32.rem, except that arguments and result are interpreted as     unsigned 32-bit integers.
val succ : int32 -> int32
Successor.  Int32.succ x is Int32.add x Int32.one.
val pred : int32 -> int32
Predecessor.  Int32.pred x is Int32.sub x Int32.one.
val abs : int32 -> int32
abs x is the absolute value of x. On min_int this
   is min_int itself and thus remains negative.
val max_int : int32
The greatest representable 32-bit integer, 231 - 1.
val min_int : int32
The smallest representable 32-bit integer, -231.
val logand : int32 -> int32 -> int32
Bitwise logical and.
val logor : int32 -> int32 -> int32
Bitwise logical or.
val logxor : int32 -> int32 -> int32
Bitwise logical exclusive or.
val lognot : int32 -> int32
Bitwise logical negation.
val shift_left : int32 -> int -> int32
Int32.shift_left x y shifts x to the left by y bits.
   The result is unspecified if y < 0 or y >= 32.
val shift_right : int32 -> int -> int32
Int32.shift_right x y shifts x to the right by y bits.
   This is an arithmetic shift: the sign bit of x is replicated
   and inserted in the vacated bits.
   The result is unspecified if y < 0 or y >= 32.
val shift_right_logical : int32 -> int -> int32
Int32.shift_right_logical x y shifts x to the right by y bits.
   This is a logical shift: zeroes are inserted in the vacated bits
   regardless of the sign of x.
   The result is unspecified if y < 0 or y >= 32.
val of_int : int -> int32
Convert the given integer (type int) to a 32-bit integer
    (type int32). On 64-bit platforms, the argument is taken
    modulo 232.
val to_int : int32 -> int
Convert the given 32-bit integer (type int32) to an
   integer (type int).  On 32-bit platforms, the 32-bit integer
   is taken modulo 231, i.e. the high-order bit is lost
   during the conversion.  On 64-bit platforms, the conversion
   is exact.
val unsigned_to_int : int32 -> int option
Same as Int32.to_int, but interprets the argument as an unsigned integer.
    Returns None if the unsigned value of the argument cannot fit into an
    int.
val of_float : float -> int32
Convert the given floating-point number to a 32-bit integer,
   discarding the fractional part (truncate towards 0).
   If the truncated floating-point number is outside the range
   [Int32.min_int, Int32.max_int], no exception is raised, and
   an unspecified, platform-dependent integer is returned.
val to_float : int32 -> float
Convert the given 32-bit integer to a floating-point number.
val of_string : string -> int32
Convert the given string to a 32-bit integer.
   The string is read in decimal (by default, or if the string
   begins with 0u) or in hexadecimal, octal or binary if the
   string begins with 0x, 0o or 0b respectively.
The 0u prefix reads the input as an unsigned integer in the range
   [0, 2*Int32.max_int+1].  If the input exceeds Int32.max_int
   it is converted to the signed integer
   Int32.min_int + input - Int32.max_int - 1.
The _ (underscore) character can appear anywhere in the string
   and is ignored.
Failure if the given string is not
   a valid representation of an integer, or if the integer represented
   exceeds the range of integers representable in type int32.val of_string_opt : string -> int32 option
Same as of_string, but return None instead of raising.
val to_string : int32 -> string
Return the string representation of its argument, in signed decimal.
val bits_of_float : float -> int32
Return the internal representation of the given float according to the IEEE 754 floating-point 'single format' bit layout. Bit 31 of the result represents the sign of the float; bits 30 to 23 represent the (biased) exponent; bits 22 to 0 represent the mantissa.
val float_of_bits : int32 -> float
Return the floating-point number whose internal representation,
   according to the IEEE 754 floating-point 'single format' bit layout,
   is the given int32.
type t = int32 
An alias for the type of 32-bit integers.
val compare : t -> t -> int
val unsigned_compare : t -> t -> int
Same as Int32.compare, except that arguments are interpreted as unsigned
    32-bit integers.
val equal : t -> t -> bool
The equal function for int32s.
val min : t -> t -> t
Return the smaller of the two arguments.
val max : t -> t -> t
Return the greater of the two arguments.