`module Bigarray: sig .. end`

Large, multi-dimensional, numerical arrays.

This module implements multi-dimensional arrays of integers and floating-point numbers, thereafter referred to as 'big arrays'. The implementation allows efficient sharing of large numerical arrays between OCaml code and C or Fortran numerical libraries.

Concerning the naming conventions, users of this module are encouraged
to do ```
open Bigarray;
```

in their source, then refer to array types and
operations via short dot notation, e.g. `Array1.t`

or `Array2.sub`

.

Big arrays support all the OCaml ad-hoc polymorphic operations:

- comparisons (
`=`

,`<>`

,`<=`

, etc, as well as`Pervasives.compare`

); - hashing (module
`Hash`

); - and structured input-output (the functions from the
`Marshal`

module, as well as`Pervasives.output_value`

and`Pervasives.input_value`

).

Big arrays can contain elements of the following kinds:

- IEEE single precision (32 bits) floating-point numbers
(
`Bigarray.float32_elt`

), - IEEE double precision (64 bits) floating-point numbers
(
`Bigarray.float64_elt`

), - IEEE single precision (2 * 32 bits) floating-point complex numbers
(
`Bigarray.complex32_elt`

), - IEEE double precision (2 * 64 bits) floating-point complex numbers
(
`Bigarray.complex64_elt`

), - 8-bit integers (signed or unsigned)
(
`Bigarray.int8_signed_elt`

or`Bigarray.int8_unsigned_elt`

), - 16-bit integers (signed or unsigned)
(
`Bigarray.int16_signed_elt`

or`Bigarray.int16_unsigned_elt`

), - OCaml integers (signed, 31 bits on 32-bit architectures,
63 bits on 64-bit architectures) (
`Bigarray.int_elt`

), - 32-bit signed integer (
`Bigarray.int32_elt`

), - 64-bit signed integers (
`Bigarray.int64_elt`

), - platform-native signed integers (32 bits on 32-bit architectures,
64 bits on 64-bit architectures) (
`Bigarray.nativeint_elt`

).

`*_elt`

types defined below (defined with a single constructor instead
of abstract types for technical injectivity reasons).`type float32_elt = `

`|` |
`Float32_elt` |

`type float64_elt = `

`|` |
`Float64_elt` |

`type int8_signed_elt = `

`|` |
`Int8_signed_elt` |

`type int8_unsigned_elt = `

`|` |
`Int8_unsigned_elt` |

`type int16_signed_elt = `

`|` |
`Int16_signed_elt` |

`type int16_unsigned_elt = `

`|` |
`Int16_unsigned_elt` |

`type int32_elt = `

`|` |
`Int32_elt` |

`type int64_elt = `

`|` |
`Int64_elt` |

`type int_elt = `

`|` |
`Int_elt` |

`type nativeint_elt = `

`|` |
`Nativeint_elt` |

`type complex32_elt = `

`|` |
`Complex32_elt` |

`type complex64_elt = `

`|` |
`Complex64_elt` |

`type ('a, 'b) kind = `

`|` |
`Float32 : (float, float32_elt) kind` |
|||

`|` |
`Float64 : (float, float64_elt) kind` |
|||

`|` |
`Int8_signed : (int, int8_signed_elt) kind` |
|||

`|` |
`Int8_unsigned : (int, int8_unsigned_elt) kind` |
|||

`|` |
`Int16_signed : (int, int16_signed_elt) kind` |
|||

`|` |
`Int16_unsigned : (int, int16_unsigned_elt) kind` |
|||

`|` |
`Int32 : (int32, int32_elt) kind` |
|||

`|` |
`Int64 : (int64, int64_elt) kind` |
|||

`|` |
`Int : (int, int_elt) kind` |
|||

`|` |
`Nativeint : (nativeint, nativeint_elt) kind` |
|||

`|` |
`Complex32 : (Complex.t, complex32_elt) kind` |
|||

`|` |
`Complex64 : (Complex.t, complex64_elt) kind` |
|||

`|` |
`Char : (char, int8_unsigned_elt) kind` |
`(*` |
To each element kind is associated an OCaml type, which is
the type of OCaml values that can be stored in the big array
or read back from it. This type is not necessarily the same
as the type of the array elements proper: for instance,
a big array whose elements are of kind
`float32_elt` contains
32-bit single precision floats, but reading or writing one of
its elements from OCaml uses the OCaml type `float` , which is
64-bit double precision floats.
The GADT type Using a generalized algebraic datatype (GADT) here allows to write well-typed polymorphic functions whose return type depend on the argument type, such as:
let zero : type a b. (a, b) kind -> a = function | Float32 -> 0.0 | Complex32 -> Complex.zero | Float64 -> 0.0 | Complex64 -> Complex.zero | Int8_signed -> 0 | Int8_unsigned -> 0 | Int16_signed -> 0 | Int16_unsigned -> 0 | Int32 -> 0l | Int64 -> 0L | Int -> 0 | Nativeint -> 0n | Char -> '\000' | `*)` |

```
let float32: kind(float, float32_elt);
```

See

`Bigarray.char`

.```
let float64: kind(float, float64_elt);
```

See

`Bigarray.char`

.```
let complex32: kind(Complex.t, complex32_elt);
```

See

`Bigarray.char`

.```
let complex64: kind(Complex.t, complex64_elt);
```

See

`Bigarray.char`

.```
let int8_signed: kind(int, int8_signed_elt);
```

See

`Bigarray.char`

.```
let int8_unsigned: kind(int, int8_unsigned_elt);
```

See

`Bigarray.char`

.```
let int16_signed: kind(int, int16_signed_elt);
```

See

`Bigarray.char`

.```
let int16_unsigned: kind(int, int16_unsigned_elt);
```

See

`Bigarray.char`

.```
let int: kind(int, int_elt);
```

See

`Bigarray.char`

.```
let int32: kind(int32, int32_elt);
```

See

`Bigarray.char`

.```
let int64: kind(int64, int64_elt);
```

See

`Bigarray.char`

.```
let nativeint: kind(nativeint, nativeint_elt);
```

See

`Bigarray.char`

.```
let char: kind(char, int8_unsigned_elt);
```

As shown by the types of the values above,
big arrays of kind

`float32_elt`

and `float64_elt`

are
accessed using the OCaml type `float`

. Big arrays of complex kinds
`complex32_elt`

, `complex64_elt`

are accessed with the OCaml type
`Complex.t`

. Big arrays of
integer kinds are accessed using the smallest OCaml integer
type large enough to represent the array elements:
`int`

for 8- and 16-bit integer bigarrays, as well as OCaml-integer
bigarrays; `int32`

for 32-bit integer bigarrays; `int64`

for 64-bit integer bigarrays; and `nativeint`

for
platform-native integer bigarrays. Finally, big arrays of
kind `int8_unsigned_elt`

can also be accessed as arrays of
characters instead of arrays of small integers, by using
the kind value `char`

instead of `int8_unsigned`

.`type c_layout = `

`|` |
`C_layout_typ` |
`(*` | `*)` |

`type fortran_layout = `

`|` |
`Fortran_layout_typ` |
`(*` |
To facilitate interoperability with existing C and Fortran code,
this library supports two different memory layouts for big arrays,
one compatible with the C conventions,
the other compatible with the Fortran conventions.
In the C-style layout, array indices start at 0, and
multi-dimensional arrays are laid out in row-major format.
That is, for a two-dimensional array, all elements of
row 0 are contiguous in memory, followed by all elements of
row 1, etc. In other terms, the array elements at
In the Fortran-style layout, array indices start at 1, and
multi-dimensional arrays are laid out in column-major format.
That is, for a two-dimensional array, all elements of
column 0 are contiguous in memory, followed by all elements of
column 1, etc. In other terms, the array elements at
Each layout style is identified at the type level by the
phantom types | `*)` |

Supported layouts

The GADT type `'a layout`

represents one of the two supported
memory layouts: C-style or Fortran-style. Its constructors are
re-exported as values below for backward-compatibility reasons.

`type 'a layout = `

`|` |
`C_layout : c_layout layout` |

`|` |
`Fortran_layout : fortran_layout layout` |

```
let c_layout: layout(c_layout);
```

```
let fortran_layout: layout(fortran_layout);
```

`module Genarray: sig .. end`

`module Array1: sig .. end`

One-dimensional arrays.

`module Array2: sig .. end`

Two-dimensional arrays.

`module Array3: sig .. end`

Three-dimensional arrays.

```
let genarray_of_array1: Array1.t('a, 'b, 'c) => Genarray.t('a, 'b, 'c);
```

Return the generic big array corresponding to the given one-dimensional
big array.

```
let genarray_of_array2: Array2.t('a, 'b, 'c) => Genarray.t('a, 'b, 'c);
```

Return the generic big array corresponding to the given two-dimensional
big array.

```
let genarray_of_array3: Array3.t('a, 'b, 'c) => Genarray.t('a, 'b, 'c);
```

Return the generic big array corresponding to the given three-dimensional
big array.

```
let array1_of_genarray: Genarray.t('a, 'b, 'c) => Array1.t('a, 'b, 'c);
```

Return the one-dimensional big array corresponding to the given
generic big array. Raise

`Invalid_argument`

if the generic big array
does not have exactly one dimension.```
let array2_of_genarray: Genarray.t('a, 'b, 'c) => Array2.t('a, 'b, 'c);
```

Return the two-dimensional big array corresponding to the given
generic big array. Raise

`Invalid_argument`

if the generic big array
does not have exactly two dimensions.```
let array3_of_genarray: Genarray.t('a, 'b, 'c) => Array3.t('a, 'b, 'c);
```

Return the three-dimensional big array corresponding to the given
generic big array. Raise

`Invalid_argument`

if the generic big array
does not have exactly three dimensions.```
let reshape: (Genarray.t('a, 'b, 'c), array(int)) => Genarray.t('a, 'b, 'c);
```

`reshape b [|d1;...;dN|]`

converts the big array `b`

to a
`N`

-dimensional array of dimensions `d1`

...`dN`

. The returned
array and the original array `b`

share their data
and have the same layout. For instance, assuming that `b`

is a one-dimensional array of dimension 12, `reshape b [|3;4|]`

returns a two-dimensional array `b'`

of dimensions 3 and 4.
If `b`

has C layout, the element `(x,y)`

of `b'`

corresponds
to the element `x * 3 + y`

of `b`

. If `b`

has Fortran layout,
the element `(x,y)`

of `b'`

corresponds to the element
`x + (y - 1) * 4`

of `b`

.
The returned big array must have exactly the same number of
elements as the original big array `b`

. That is, the product
of the dimensions of `b`

must be equal to `i1 * ... * iN`

.
Otherwise, `Invalid_argument`

is raised.```
let reshape_1: (Genarray.t('a, 'b, 'c), int) => Array1.t('a, 'b, 'c);
```

Specialized version of

`Bigarray.reshape`

for reshaping to
one-dimensional arrays.```
let reshape_2: (Genarray.t('a, 'b, 'c), int, int) => Array2.t('a, 'b, 'c);
```

Specialized version of

`Bigarray.reshape`

for reshaping to
two-dimensional arrays.```
let reshape_3: (Genarray.t('a, 'b, 'c), int, int, int) => Array3.t('a, 'b, 'c);
```

Specialized version of

`Bigarray.reshape`

for reshaping to
three-dimensional arrays.